A simple Python code for computing effective properties of 2D and 3D representative volume element under periodic boundary conditions
نویسندگان
چکیده
Multiscale optimization is an attractive research field recently. For the most of optimization tools, design parameters should be updated during a close loop. Therefore, a simple Python code is programmed to obtain effective properties of Representative Volume Element (RVE) under Periodic Boundary Conditions (PBCs). It can compute the mechanical properties of a composite with a periodic structure, in two or three dimensions. The computation method is based on the Asymptotic Homogenization Theory (AHT). With simple modifications, the basic Python code may be extended to the computation of the effective properties of more complex microstructure. Moreover, the code provides a convenient platform upon the optimization for the material and geometric composite design. The user may experiment with various algorithms and tackle a wide range of problems. To verify the effectiveness and reliability of the code, a three-dimensional case is employed to illuminate the code. Finally numerical results obtained by the code agree well with the available theoretical and experimental results.
منابع مشابه
Comparison of Two Computational Microstructure Models for Predicting Effective Transverse Elastic Properties of Unidirectional Fiber Reinforced Composites
Characterization of properties of composites has attracted a great deal of attention towards exploring their applications in engineering. The purpose of this work is to study the difference of two computational microstructure models which are widely used for determining effective transverse elastic properties of unidirectional fiber reinforced composites. The first model based on the classic me...
متن کامل3D BENCHMARK RESULTS FOR ROBUST STRUCTURAL OPTIMIZATION UNDER UNCERTAINTY IN LOADING DIRECTIONS
This study has been inspired by the paper "An efficient 3D topology optimization code written in MATLAB” written by Liu and Tovar (2014) demonstrating that SIMP-based three-dimensional (3D) topology optimization of continuum structures can be implemented in 169 lines of MATLAB code. Based on the above paper, we show here that, by simple and easy-to-understand modificati...
متن کاملA Finite Element Model for Simulating Flow around a Well with Helically Symmetric Perforations
In a perforated well, fluids enter the wellbore through array of perforation tunnels. These perforations are typically distributed in a helical pattern around the wellbore. Available numerical models to simulate production flow into cased-and-perforated vertical wells have complicated boundary conditions or suffer from high computational costs. This paper presents a simple and at the same time ...
متن کاملEffect of Carbon Nanotube Geometries on Mechanical Properties of Nanocomposite Via Nanoscale Representative Volume Element
Predicting the effective elastic properties of carbon nanotube-reinforced nanocomposites is of great interest to many structural designers and engineers for improving material and configuration design in recent years. In this paper, a finite element model of a CNT composite has been developed using the Representative volume element (RVE) to evaluate the effective material properties of nanocomp...
متن کاملAnalysis of coupled heat and moisture transfer in masonry structures
Evaluation of effective or macroscopic coefficients of thermal conductivity under coupled heat and moisture transfer is presented. The paper first gives a detailed summary on the solution of a simple steady state heat conduction problem with an emphasis on various types of boundary conditions applied to the representative volume element – a periodic unit cell. Since the results essentially sugg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1703.03930 شماره
صفحات -
تاریخ انتشار 2017